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ABSTRACT
Due to the international transfer of manufacturing industry, the
change of trade policy and frequent irregular events in the global
trade, it becomes more difficult to predict port container through-
put accurately. In order to improve the predictive accuracy, we
develop a bidirectional long short-term memory network model
to forecast the throughput. Using the data of port in Qingdao, this
study investigates for the first time how to use the deep learning
approach to predict port container throughput. The empirical re-
sults show that the proposed model can achieve highest average
predictive accuracy, which indicates that the approach is effective
in the increasingly complex trade situation.
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1 INTRODUCTION
Port container transportation is an important guarantee of inter-
national trade, which is closely related to the core interests of
many enterprises and even the economy of relevant countries [1].
Container throughput is one of the most important indicators to
measure the development of port economy. Accurate prediction
of port container throughput can provide necessary information
for port management, port related enterprises, city and national
economic development decision-making [2].
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In recent years, a large number of forecasting methods have
been proposed to forecast port containers, mainly divided into
univariate methods and multivariable methods. For the univariate
methods, most of the researches on container throughput fore-
casting use univariate time series forecasting models, including
econometric models, artificial intelligence (AI) models, hybrid mod-
els and decomposition-ensemble models. The econometric models
include linear regression [3], the autoregressive integrated moving
average (ARIMA) model [4], the seasonal autoregressive integrated
moving average (SARIMA) model [5], the Holt-Winters exponential
smoothing [6], and vector error correction model [7]. AI models
are grey Verhulst model [8], multilayer perceptron neural network
(MLP) [3], radial basis function (RBF) neural networks [9], genetic
programming [10], back propagation neural network (BPNN) [11],
support vector regression (SVR), and least squares support vector
regression (LSSVR) [12]. Generally, AI models can deal with the
nonlinear information of data, so their forecasting performance is
better than econometric models.

Besides single forecasting models, hybrid models are developed
to effectively utilize the advantages of different models. Combin-
ing the grey model with the classical decomposition model, Peng
and Chu [5] proposed a hybrid grey model, which extended the
analysis by changing the size of the initial sequence in grey fore-
cast and searched for the one that has the lowest prediction errors.
Tian et al. [13] presented an integrated forecasting model, which
includes four steps: an econometric model for the linear compo-
nent, a RBF neural network for the nonlinear component, impact
assessment of economic and other events, integrating predictions.
The decomposition-ensemble methodology has also been used in
the prediction of container throughput at ports. Extending the clas-
sical decomposition model in Peng and Chu [5], Xie et al. [14]
proposed three hybrid approaches based on seasonal decomposi-
tion and LSSVR model. Continuously, Xie et al. [14] proposed a
novel decomposition-ensemble methodology, which includes four
steps: data decomposition, data characteristic analysis, individual
forecasts, ensemble forecast. Consequently, there is the need for an
alternative forecasting model.

For the multivariable methods, most researchers utilized eco-
nomic indexes as explanatory variables [15, 16]. Chou et al. [17]
predicted Taiwan’s import container volume with economic indi-
cators, including export container volume, import container vol-
ume, population, industrial production index, GNP, GNP per capita,
wholesale price, GDP, agricultural GDP, industrial GDP, and ser-
vice GDP. Using the port throughput data and socio-economic

https://doi.org/10.1145/3487075.3487173
https://doi.org/10.1145/3487075.3487173


CSAE 2021, October 19–21, 2021, Sanya, China Fuxin Jiang et al.

index data of Shanghai city, Geng et al. [18] evaluate the feasibility
and effectiveness of the proposed scheme. Intihar et al. [19] exam-
ined the impact of integration of macroeconomic indicators on the
predictive accuracy of forecasting model. Using cross-correlation
function to test relationships between different economic variables
and container throughput, Rashed et al. [20] found that industrial
confidence indicator in the Euro Area (ICI_ EA) with two lags shows
the best fit as a leading indicator.

In practice, many studies use both economic and trade indexes
in the prediction of container throughput at ports. Dagenais and
Martin [21] proposed a long-term prediction method for the over-
seas container traffic volume of Montreal port. The forecasting
model considers the expected changes of three factors: the volume
of international trade between Canada and the USA, the rate of
containerization and the growth of Canada’s domestic region.

Besides economic and trade indexes, some correlated time series
data of container throughput at other ports are used to assist in
modeling the time series at target ports [22]. In addition to the total
trade volume and international transportation flow, de Langen [23]
also used three variables related to the containerization proportion
of transportation flow, including the share of transportation flow
that can be containerized, the containerization rate and the share
of shipping in international trade. Many econometric models have
been used for forecasting container throughput with explanatory
variables. Chou et al. [17] proposed a modified regression model
with economic data for forecasting the volumes of Taiwan’s import
containers. van Dorsser et al. [15] developed a regression model
with GDP to predict a very long term of the total port throughput
in the Le Havre - Hamburg range up to 2100. Another econometric
model is ARIMAX, which has been used for the prediction of con-
tainer throughput at the Port of Koper [19] and the port of Antwerp
[20], respectively. These studies showed that more accurate future
throughput forecasts can be achieved by applying explanatory vari-
ables to the models. Simultaneously, AI models are also used as
multivariate methods for the prediction of container throughput
at ports. Using transfer learning technique and a pattern matching
method, Xiao et al. [22] proposed a TF-DPSOmodel. Geng et al. [18]
developed a port throughput forecasting scheme by hybridizing
the RSVR, chaotic simulated annealing particle swarm optimization
(CSAPSO) algorithm and multivariable adaptive regression splines
(MARS). Here, MARS is adopted to select the final inputs for RSVR
model. Tsai & Huang [24] developed the MLPNN model to predict
container flows between the major ports of Asia.

In this study, in order to enhance predictive accuracy, we develop
a BLSTM model to forecast container throughput.Additionally, an
empirical study is conducted to illustrate the proposedmethodology.
Using data of Qingdao port, this study is the first to investigate how
search big data is used in a deep learning approach for container
throughput forecasting.

The remainder of this study proceeds as follows. Section 2 in-
troduces the proposed framework and method in detail. Section 3
illustrates the proposed methodology by empirical study.

2 METHODOLOGY
In order to solve the problems mentioned above, we propose a novel
framework, where BLSTM model is used to enable more accurate
forecasts of container throughput at ports.

2.1 BLSTM Neural Network
Long short-term memory (LSTM) network is a deep learning tech-
nique that can be used to model nonlinear and non-stationary data
[25]. It is difficult for the standard recurrent neural network (RNN)
to learn the long-term dependence relationship because of the gra-
dient vanishing or gradient explosion in the training process. In
order to solve this problem, Hochreiter and Schmidhuber [26] pro-
posed LSTM, which is also a special RNN. The architecture of the
LSTM is shown in Figure 1(a), where the LSTM unit is composed of
cell, forget gate, input gate and output gate. LSTM can remove or
add the information to cell state through a gate, which is a way for
information to pass selectively. The gate structure is implemented
by sigmoid function. The output of sigmoid function is a value
between 0 and 1, describing how much information can pass. 0
means that no information is allowed to pass, while 1 means that
any information is allowed to pass.

The working principle of LSTM can be described as follows:
First, LSTM needs to decide which information to be discarded

from the memory state, which is realized by forget gate.

ft = σ (Wf · [ht−1,xt ] + bf )

After the forget gate, the LSTM needs to decide what cell states
should be added. This process is mainly divided into two steps: first,
input gate determines which information need to be updated, and
then tanh generates a new candidate vector C̃t .

ii = σ (Wi · [ht−1,xt ] + bi )

C̃t = tanh(WC · [ht−1,xt ] + bC )

The LSTM unit then multiplies it and C̃t to update the memory
state as follows.

Ct = ft ∗Ct−1 + it ∗ C̃t

Finally, output gate is used to output memory state

ot = σ (Wo · [ht−1,xt ] + bo )

ht = ot ∗ tanh(Ct )

As we have mentioned above, LSTM can only process forward
information. In contrast to LSTM, BLSTM includes forward and
backward LSTM layers, as shown in Figure 1(b). Therefore, BLSTM
can process both forward and backward information simultane-
ously [27].

2.2 Model Evaluation
As ARIMA, BPNN and LSSVR models have been used for container
throughput forecasting at ports, they are used as benchmarks. In
addition, the LSTM model is also used for comparison with BLSTM.
In order to realize the comprehensive evaluation of models, both
point and interval forecasts are generated for each model. Root
mean square error (MSE), mean absolute error (MAE), mean abso-
lute percentage error (MAPE) are used as the evaluation criteria



Forecasting Port Container Throughput with Deep Learning Approach CSAE 2021, October 19–21, 2021, Sanya, China

Figure 1: BLSTM for Container Throughput Forecasting.

and directional accuracy (DA), respectively, as follows:

RMSE =

√√√
1
N

N∑
t=1

(yt − ŷt )
2

MAE =
1
N

N∑
t=1

|yt − ŷt |

MAPE =
1
N

N∑
t=1

(|yt − ŷt | /|yt |)

DA =
1
N

N∑
t=1

dt , dt =

{
1 i f (yt+1 − yt )(ŷt+1 − yt ) ≥
0 otherwise

where N is the size of the testing set, yt and ŷt are actual and
predicted values at period t .

3 EMPIRICAL STUDY
This section takes the container throughput data of Qingdao port
in China as an example to verify the method proposed in this paper.
The data and predictive results are introduced as follows.

3.1 The Data
The monthly data of container throughput at ports were collected
from the WIND Database [28], as shown in Figure 2. The sample
data for each port includes 105 observations covering the period
from January 2011 to April 2021. In experiments, the first 99 and
the last 25 observations were used as training and testing sets,
respectively.

Figure 2: Monthly Container Throughput at Qingdao Port.

Table 1: Parameters of Forecasting Models

Model ARIMA LSTM BLSTM

Parameter (1,0,1) (16,4,0,0) (16,4,0,0)

3.2 Predictive Result
Using ARIMA, LSTM and BLSTM models with different indepen-
dent variables, the static forecast of port container throughput was
implemented. According to Schwarz criterion (SC) and Akaike in-
formation criterion (AIC), the parameters of ARIMA models were
determined. In the LSTM and BLSTM models, the time step is set
to 12. Due to the limited data length of training set, both models
adopted the regularization technique. Dropout and L1 regulariza-
tion were presented in the model training phase. The last 20% of the
training set is set as the validation set. The parameters of BLSTM
was obtained by using the grid search. The LSTM hidden unit
p ∈ {8, 16, 32, 64, 128} , the dropout rate d ∈ {0, 0.1, 0.2, 0.3} , L1
regularization coefficient l1 ∈ {0, 0.1, 0.2, 0.3, 0.5, 1, 1.5, 2, 2.5, 3}.
Similarly, the grid search shows that the benchmark method LSTM
has the same hidden unit, the dropout rate, and L1 regulariza-
tion coefficient as BLSTM. The learning rate is set to 0.01, the
number of training epochs is set to 100, the training batch size
b ∈ {2, 4, 8, 16, 32}.

The parameters of forecasting models are shown in Table 1,
where (16, 16, 0, 0) in LSTM/BLSTM means that the number of
hidden cells is 16, batch size is 16, dropout is 0 and the regularization
parameter is 0. The actual value and predicted values of container
throughput by different models for Qingdao are shown in Figure 3

As shown in Table 2, BLSTM model prediction is better than
LSTM and ARIMA in various evaluation criteria. Compared with
LSTM (ARIMA), BLSTM improves 5.3% (14.7%) in RMSE, 6.7%
(21.5%) in MAE, 6.7% (26.7%) in MAPE, and 25% (25%) in DA.

4 CONCLUSION
This study investigates how to forecast container throughput by
using a deep learning approach. Using the data of Qingdao port
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Table 2: Performance Comparison of Different Methods

Model RMSE MAE MAPE DA

ARIMA 83142.6 66121.6 0.038 0.64
LSTM 74839.3 55609.6 0.032 0.64
BLSTM 70897.5 51888.2 0.03 0.8

Figure 3: Monthly Container Throughput at Qingdao Port.

in China, empirical analysis shows that the proposed model can
achieve higher predictive accuracy than benchmark models in point
forecasting. This study only forecasts the port containers in Qing-
dao and can be extended to other port container forecasts in the
future.
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